Exercícios sobre a lei de Hess
Um passo do processo de produção de ferro metálico, Fe(s), é a redução do óxido ferroso (FeO) com monóxido de carbono (CO).
FeO(s) + CO(g) → Fe(s) + CO2(g) ∆H = x
Utilizando as equações termoquímicas abaixo e baseando-se na Lei de Hess, assinale a alternativa que indique o valor mais próximo de “x”:
Fe2O3(s) + 3 CO(g) → 2 Fe(s) + 3 CO2(g) ∆H = -25 kJ
3 FeO(s) + CO2(g) → Fe3O4(s) + CO(g) ∆H = -36 kJ
2 Fe3O4(s) + CO2(g) → 3 Fe2O3(s) + CO(g) ∆H = +47 kJ
a) -17 kJ.
b) +14 kJ.
c) -100 kJ.
d) -36 kJ.
e) +50 kJ.
Alternativa “a”.
O valor que queremos descobrir é o da variação da entalpia da reação:
FeO(s) + CO(g) → Fe(s) + CO2(g) ∆H = x
Segundo a lei de Hess, a variação da entalpia de uma reação depende somente da entalpia do estado final e inicial, independentemente se a reação ocorreu em uma única etapa ou em mais. Por isso, podemos somar as três reações e descobrir o valor do “x”. Mas observe que é preciso multiplicar a primeira equação por 3 e a segunda por 2:
3 Fe2O3(s) + 9 CO(g) → 6 Fe(s) + 9 CO2(g) ∆H = -75 kJ
6 FeO(s) + 2 CO2(g) → 2 Fe3O4(s) + 2 CO(g) ∆H = -72 kJ
2 Fe3O4(s) + CO2(g) → 3 Fe2O3(s) + CO(g) ∆H = +47 kJ
6 FeO(s) + 6 CO(g) → 6 Fe(s) + 6 CO2(g) ∆H = -100 kJ
Dividindo a equação inteira por 6, inclusive o valor de ∆H, temos o seguinte valor aproximado:
FeO(s) + CO(g) → Fe(s) + CO2(g) ∆H = -17 kJ
Dadas as seguintes equações termoquímicas:
2 H2(g) + O2(g) → 2 H2O(ℓ) ∆H = -571,5 kJ
N2O5(g) + H2O(ℓ) → 2 HNO3(ℓ) ∆H = -76,6 kJ
½ N2(g) + 3/2 O2(g) + ½ H2(g) → HNO3(ℓ) ∆H = -174,1 kJ
Baseado nessas equações, determine a alternativa correta a respeito da formação de 2 mols de N2O5(g) a partir de 2 mols de N2(g) e 5 mols de O2(g):
a) libera 28,3 kJ
b) absorve 28,3 kJ.
c) libera 822,2 kJ.
d) absorve 822,2 kJ.
e) absorve 474 ,0 kJ.
Alternativa “b”.
Queremos descobrir o calor que foi liberado ou absorvido (variação de entalpia) na seguinte equação:
2 N2(g) + 5 O2(g) → 2 N2O5(g) ∆H = ?
Para resolver essa questão aplicando a Lei de Hess, temos que inverter a primeira e a segunda equação, multiplicar a segunda equação por 2 e multiplicar a terceira equação por 4:
2 H2O(ℓ) → 2 H2(g) + O2(g) ∆H = +571,5 kJ
4 HNO3(ℓ) → 2 N2O5(g) + 2 H2O(ℓ) ∆H = +153,2 kJ
2 N2(g) + 6 O2(g) + 2 H2(g) → 4 HNO3(ℓ) ∆H = -696,4 kJ
2 N2(g) + 5 O2(g) → 2 N2O5(g) ∆H = + 28,3 kJ
O sinal positivo indica que houve absorção de energia na forma de calor.
(FGV-SP) Em um conversor catalítico, usado em veículos automotores em seu cano de escape para redução da poluição atmosférica, ocorrem várias reações químicas, sendo que uma das mais importantes é:
1 CO(g) + ½ O2(g) → 1 CO2(g)
Sabendo-se que as entalpias das reações citadas abaixo são:
C(grafita) + ½ O2(g) → CO(g) ∆H1 = -26,4 kcal
C(grafita) + O2(g) → CO2(g) ∆H2 = -94,1 kcal
Pode-se afirmar que a reação inicial é:
a) exotérmica e absorve 67,7 kcal/mol.
b) exotérmica e libera 120,5 kcal/mol.
c) exotérmica e libera 67,7 kcal/mol.
d) endotérmica e absorve 120,5 kcal/mol.
e) endotérmica e absorve 67,7 kcal/mol.
Alternativa “c”.
O inverso da equação 1 somado à equação 2:
CO(g) → C(grafita) + ½ O2(g) ∆H1 = +26,4 kcal
C(grafita) + O2(g) → CO2(g) ∆H2 = -94,1 kcal
CO(g) + ½ O2(g) → CO2(g) ∆H = -67,7 kcal
(Cesgranrio-RJ) O elemento químico tungstênio, W, é muito utilizado em filamentos de lâmpadas incandescentes comuns. Quando ligado a elementos como carbono ou boro, forma substâncias quimicamente inertes e muito duras. O carbeto de tungstênio, WC(s), muito utilizado em esmeris, lixas para metais etc., pode ser obtido pela reação:
1 C(grafite) + 1 W(s) → 1 WC(s)
A partir das reações a seguir, calcule o ∆H de formação para o WC(s). Dados:
1 W(s) + 3/2 O2(g) → 1 WO3(s) ∆HCOMBUSTÃO = -840 kJ/mol
1 C(grafite) + 1 O2(g) → 1 CO2(g) ∆HCOMBUSTÃO = -394 kJ/mol
1 WC(s) + 5/2 O2(g) → 1WO3(s) + 1 CO2(g) ∆HCOMBUSTÃO =-1196 kJ/mol
a) - 19 kJ/mol
b) + 38 kJ/mol
c) - 38 kJ/mol
d) + 2 430 kJ/mol
e) - 2 430 kJ/mol
Alternativa “c”.
Para chegar à equação desejada, temos que inverter a terceira equação:
1 W(s) + 3/2 O2(g) → 1 WO3(s) ∆HCOMBUSTÃO = -840 kJ/mol
1 C(grafite) + 1 O2(g) → 1 CO2(g) ∆HCOMBUSTÃO = -394 kJ/mol
1WO3(s) + 1 CO2(g) →1 WC(s) + 5/2 O2(g) ∆HCOMBUSTÃO = +1196 kJ/mol
1 C(grafite) + 1 W(s) → 1 WC(s) ∆H = -38 kJ/mol